Challenges of New Technology for Technical Inspection

Frank Ramowsky

Head of E-Mobility
TÜV Rheinland Holding AG
Challenges of New Technology for Technical Inspection

TÜV Rheinland
Dipl.-Ing. Frank Ramowsky
Global Head of E-Mobility
Agenda

<table>
<thead>
<tr>
<th></th>
<th>Agenda Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction to E-Mobility</td>
</tr>
<tr>
<td>2</td>
<td>Definition of High Voltage Systems</td>
</tr>
<tr>
<td>3</td>
<td>Challenges during the Vehicle Inspection</td>
</tr>
<tr>
<td>4</td>
<td>Potential Hazards due to High Voltage</td>
</tr>
<tr>
<td>5</td>
<td>Scope of Additional Testing</td>
</tr>
<tr>
<td>6</td>
<td>Future Topics</td>
</tr>
</tbody>
</table>
1. Introduction to E-Mobility
Market and Offer - All different Ways of E-Mobility
1. Introduction to E-Mobility

Electric Mobility Past and Present

The development of electric vehicles (EV) is in its third phase at present.

Phase I
- Lohner-Porsche 4-wheel drive racing car
- Hansa-Lloyd electric truck CL5
- Elektromote by Werner Siemens, Berlin

Phase II
- Golf III - Citystromer
- General Motors EV1
- Bergmann parcel delivery vehicle

Phase III
- Tesla Roadster
- Toyota Formula 1 TF 109-02
- Apollo 17 mission
1. Introduction to E-Mobility
Global Market Offers - Definition of new vehicle concepts to increase energy efficiency

- Conventional
- Hybrid
 - Micro Hybrid
 - Mild Hybrid
 - Full Hybrid
 - Plug-in Hybrid
- Battery
- Fuel Cell

E-Mobility
1. Introduction to E-Mobility

Global Market Growth Expectation - Worldwide Sales of E-Vehicles per Type, 2012-2020

HEV = Hybrid Electric Vehicle
PHEV = Plug In Hybrid Electric Vehicle
BEV = Battery Electric Vehicle

Quelle: Pike Research
1. Introduction to E-Mobility
Global E-Mobility Focus Markets

The world today has about 30 megacities with a population of more than 10 million. The tendency for urbanisation is rising significantly.
1. Introduction to E-Mobility

The **Process Chain** of E-Mobility at TÜV Rheinland

- **Industrie Service**
- **Mobility**
- **Products**
- **Systems**
- **Training and Consulting**

Energy Generation and Grids

Storage Systems/Batteries

Vehicle Utilization
- Homologation
- Training
- Recycling

Distribution/Charging Stations
- Charging Station
- Exchange Station

Billing System, Data Security

Generation
- Transport

Operation
- Billing

Storage

2nd/3rd Life

2013 CITA Conference, 15-17th May, Sevilla, Spain
2. Definition of High Voltage Systems

Global Market Offers - Definition of new vehicle concepts to increase energy efficiency

- Hybrid
 - Micro Hybrid
 - Mild Hybrid
 - Full Hybrid
 - Plug-in Hybrid

- Conventional
- Battery
- Fuel Cell

10 16.05.2013 2013 CITA Conference, 15-17th May, Sevilla, Spain
2. Definition of High Voltage Systems

Power-split Hybrid

- Combustion Engine
- Generator MG1
- Inverter
- Differential
- Option Electric Motor with 4WD
- Electric Motor MG2 / Front Axle
- Heavy-Duty Battery System

- Serial
- Parallel
- Split
2. Definition of High Voltage Systems

Power diagrams

- **Combustion Engine**
 - Performance
 - Torque

- **Electric Motor**
 - Performance
 - Torque
2. Definition of High Voltage Systems

Power diagram for a hybrid system

Two Types of drive that are mutually supportive

E-Motor: high starting torque
Combustion Engine: high engine power
2. Definition of High Voltage Systems

Hybrid drive energy management

- Combustion Engine
- Energy Demand

Battery
Energy Storage
Power Supply
Wiring Systems 12V/42V

- Energy
- Charging Rate
- Braking Energy

Acceleration
Electric Drive
Combustion Engine works with a maximum efficiency
Deceleration
Combustion Engine stopped

Source: Toyota
2. Definition of High Voltage Systems

Comparison between the behaviour of hydraulic and electrical braking

1-2: Field Weakening
- Building of brake force
2: E-Motor in Anchor Adjusting Range
- maximum energy recovery
3: Battery is charged
- no further regenerative braking possible

Purely electric braking is not allowed!
2. Definition of High Voltage Systems

Electrical drives – Overview

Main properties of electrical drive concepts

<table>
<thead>
<tr>
<th></th>
<th>HEV</th>
<th>PHEV</th>
<th>EV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td>10 - 40 kW</td>
<td>30 - 80 kW</td>
<td>30 - 80 kW</td>
</tr>
<tr>
<td>Voltage</td>
<td>42 - 300 V</td>
<td>150 - 400 V</td>
<td>400 V</td>
</tr>
<tr>
<td>Energy per cycle</td>
<td>< 300 Wh</td>
<td>> 4 kWh</td>
<td>> 15 kWh</td>
</tr>
<tr>
<td>Cycles during 12 yrs operation</td>
<td>300,000</td>
<td>4,000</td>
<td>2,000</td>
</tr>
<tr>
<td>Battery size</td>
<td>0.6 - 2 kWh</td>
<td>5 - 15 kWh</td>
<td>> 15 kWh</td>
</tr>
<tr>
<td>Battery mass</td>
<td>≈ 50 kg</td>
<td>≈ 120 kg</td>
<td>≈ 250 kg</td>
</tr>
<tr>
<td>Battery Price</td>
<td>≈ 1.000 €</td>
<td>≈ 7.500 €</td>
<td>≈ 12.000 €</td>
</tr>
</tbody>
</table>
3. Challenges during the Vehicle Inspection

View under the hood
3. Challenges during the Vehicle Inspection

Electrical drive train: how to identify an EV

Registration Documents:
E.g. T.1:
Field P.3: Fuel type or source or energy
E.g. "Electric", "Hybr. petrol/E", ...

Vehicle registration certificate (Part 1):
Field 5: Drive type
E.g. "Key no. 25",

25 = combination of combustion engine with an electric drive (hybrid)
3. Challenges during the Vehicle Inspection

Electrical drive train: how to identify an EV

Dashboard displays:

Renault

Toyota

Volkswagen

http://www.Mein-Elektroauto.com
3. Challenges during the Vehicle Inspection
Electrical drive train: how to identify an EV

Markings on the vehicle:

Labels / striking stickers

Warnings

Cable colour coding
(HV cables/conduits are generally orange*)

*: Colour only changed to orange with ECE R-100, rev. 01
4. Potential Hazards due to High Voltage
Injuries caused by electrical current and batteries

Electrical effect - Low voltage

Thermal effect - High voltage

Batteries

Electrical current, toxic substances, explosion

Brain *Loss of consciousness*

Heart *Ventricular fibrillations*

Lungs *Toxic, hot vapours*
Inhalation trauma, Ruptures

Muscles *Cramping, twitching, tears*

Eyes *Flash burns*

Ear *Bang trauma*

Skin *Burns, acid burns*

Internal organs
Cooking effect, burns

Bones
Breaks due to falls, Crushing
4. Potential Hazards due to High Voltage
Physiological Effects of Energy on the Human Body

These effects are depending on currency level and exposure time.

- **Zone 1**: No effect
- **Zone 2**: No harmful physiological effect
- **Zone 3**: Muscle contraction, breathing difficulties; disruption to the conduction system in the heart
- **Zone 4**: Ventricular fibrillations likely, possible cardiac arrest, respiratory arrest, serious burns

These effects are depending on currency level and exposure time.
4. Potential Hazards due to High Voltage

Examples:

- Unprofessional changes on the vehicle (work/repair/tuning by "electrical lay person") possible.
- High-voltage components not identifiable as such at a glance.
- Negative effects due to not easily visible wear conditions.
- Use of non original spare parts.

- Prominent HV markings/cable colours in force since ECE R-100.
5. Scope of Additional Testing

Additionally to Appendix VIIIa we see further potential in the following points:

e.g. effect/function testing of the overall system

Test run
- Overall function of the (electrical) drive train,
- Overall function of the braking system (with/without conditioning), Function of (HV) pilot lamps, displays, alarms, active vehicle operation state, …

e.g. visual/effect/function testing of components

Electromotor(s), performance electronics
- Function, state, installation position, manipulation, …

Electric steering, power-assisted braking, recuperation function
- Function, state, effect, …
5. Scope of Additional Testing

Additionally to Appendix VIIIa we see further potential in the following points:

e.g. visual/effect/function testing of components

High-voltage cable harness
- State, installation position, connections, shielding, equipotential bonding, …

Traction battery, (BMS), housing for HV components
- State, attachment, design, ventilation, cooling, …
5. Scope of Additional Testing

Additionally to Appendix VIIIa we see further potential in the following points:

- **e.g. visual/effect/function testing of components**

Special Heater Systems, air-conditioning
- Function, effect, state, attachment, design, sealing, ...

Warning/safety notices
- Presence, design, ...

Charging connections/Charging cables
- Function, state, (immobiliser), ...
6. Future topics

- Electric mobility includes more than just electric vehicles.
- Electric mobility is an indispensable component of economical and ecological individual mobility, now and in the future.
- Sustainable mobility is more than just a task for the automobile manufacturers: it is a task for all of society and all of the economy.
- Road Safety is manly driven by an optimized PTI system to ensure a very high technological level in operation.

Our claim: At the very least, electric mobility must match the safety and attractiveness of conventional mobility.
Thank you very much for your attention!

Dipl.-Ing. Frank Ramowsky
Global Head of E-Mobility

Tel. +49 221 806 2306
Frank.Ramowsky@de.tuv.com