

WORKSHOP A

SESSION ONE

Presentation 1

Challenges of New Technology for Technical Inspection

Frank Ramowsky

Head of E-Mobility TÜV Rheinland Holding AG

Conference and 16th General Assembly | 15-17th May | Seville - Spain

CITA 2013 Sevialla, Strategies for Benefiting Roadworthiness

Challenges of New Technology for Technical Inspection

TÜV Rheinland Dipl.-Ing. Frank Ramowsky Global Head of E-Mobility

Agenda

1	Introduction to E-Mobility
2	Definition of High Voltage Systems
3	Challenges during the Vehicle Inspection
4	Potential Hazards due to High Voltage
5	Scope of Additional Testing
6	Future Topics

1. Introduction to E-Mobility Market and Offer - All different Ways of E-Mobility

1. Introduction to E-Mobility Electric Mobility Past and Present

The development of electric vehicles (EV) is in its third phase at present

1. Introduction to E-Mobility

Global Market Offers - Definition of new vehicle concepts to increase energy efficiency

1. Introduction to E-Mobility

Global Market Growth Expectation - Worldwide Sales of E-Vehicles per Type, 2012-2020

HEV = Hybrid Electric Vehicle PHEV = Plug In Hybrid Electric Vehicle BEV = Battery Electric Vehicle Quelle: Pike Research

1. Introduction to E-Mobility Global E-Mobility Focus Markets

Source: www.wikipedia.de

TÜVRheinland®

Genau. Richtig.

1. Introduction to E-Mobility

The Process Chain of E-Mobility at TÜV Rheinland

Global Market Offers - Definition of new vehicle concepts to increase energy efficiency

Power diagrams

Power diagram for a hybrid system

Two Types of drive that are mutually supportive

E-Motor: high starting torque

Combustion Engine: high engine power

Hybrid drive energy management

Comparison between the behaviour of hydraulic and electrical braking

Purely electric braking is not allowed!

Main properties of electrical drive concepts

	HEV	PHEV	EV
Power	10 - 40 kW	30 - 80 kW	30 - 80 kW
Voltage	42 - 300 V	150 - 400 V	400 V
Energy per cycle	< 300 Wh	> 4 kWh	> 15 kWh
Cycles during 12 yrs operation	300,000	4,000	2,000
Battery size	0.6 - 2 kWh	5 - 15 kWh	> 15 kWh
Battery mass	≈ 50 kg	≈ 120 kg	≈ 250 kg
Battery Price	≈ 1.000 €	≈ 7.500 €	≈ 12.000 €

3. Challenges during the Vehicle Inspection

View under the hood

3. Challenges during the Vehicle Inspection

Electrical drive train: how to identify an EV

Registration Documents:

<u>E.g. T.1:</u>

Field P.3: Fuel type or source or energy <u>E.g.</u> "Electric", "Hybr. petrol/E",...

<u>Vehicle registration certificate (Part 1):</u> Field 5: Drive type <u>E.g.</u> "Key no. 25",

25 = combination of combustion engine with an electric drive (hybrid)

	1	
Mitsubishi i-MiEV	1 (0.1	- az - 3
MITSUBISHI (J)	1	145/65R15 72S
Fz.z.Pers.bef.b. 8 Spl.		175/55R15 77S
Kombilimousine	1 23	
715/2007*692/2008		
and the second second second second		e1*2007/46*052
Elektro	4	01.10.10 "K
0004	21	
P.2.: 35 kW/30 min, 49 kW	*	

1	010262	zu2 7	100	zu3	544002	16	Zul. Achslast kg	V.	800)	m.	0	
1	PKW GESCHLOSSEN			17	Räder u./o. Gleisketten	1	-	8 Zah Ach	l d. Isen	2	19		
	EURO 4					20	Reifen vorn	195/60R15 88H					
2	HONDA MOTOR (J)						Reifen mitte u. hintenvorn	195/60R15 88H					
3	ES9					22	od. Reifen vorn	-					
1	Fahrzeug- Ident-Nr.						Reifen mitte u. hintenvorn						
5		25 6 Höchstge- schwindigkeit 177				And	ck am Brems- chluß	2	4 br	leitungs :mse	0		25
7	Leistung kW bei U/min	K61/570)0		and a	26	26 DIN740 Form u. Größe						10
8	Hubraum	1339				27	27 Anhängerkupplung						

3. Challenges during the Vehicle Inspection Electrical drive train: how to identify an EV

Dashboard displays:

Volkswagen

3. Challenges during the Vehicle Inspection Electrical drive train: how to identify an EV

Markings on the vehicle:

Labels / striking stickers

Warnings

Cable colour coding (HV cables/conduits are generally orange*) *: Colour only changed to orange with ECE R-100, rev. 01

4. Potential Hazards due to High Voltage

Injuries caused by electrical current and batteries

4. Potential Hazards due to High Voltage Physiological Effects of Energy on the Human Body

These effects are depending on currency level and exposure time.

- Zone 1: No effect
- Zone 2: No harmful physiological effect
- Zone 3: Muscle contraction, breathing difficulties; disruption to the conduction system in the heart
- Zone 4: Ventricular fibrillations likely, possible cardiac arrest, respiratory arrest, serious burns

4. Potential Hazards due to High Voltage

Examples:

- Unprofessional changes on the vehicle (work/repair/tuning by "electrical lay person") possible.
- High-voltage components not identifiable as such at a glance.
- Negative effects due to not easily visible wear conditions.
- Use of non original spare parts.
- Prominent HV markings/cable colours in force since ECE R-100.

5. Scope of Additional Testing

Additionally to Appendix VIIIa we see further potential in the following points:

e.g. effect/function testing of the overall system

Test run

- Overall function of the (electrical) drive train,
- Overall function of the braking system (with/without conditioning), Function of (HV) pilot lamps, displays, alarms, active vehicle operation state, ...

e.g. visual/effect/function testing of components

Electromotor(s), performance electronics

Function, state, installation position, manipulation, …

Electric steering, power-assisted braking, recuperation function

Function, state, effect, …

5. Scope of Additional Testing

Additionally to Appendix VIIIa we see further potential in the following points:

e.g. visual/effect/function testing of components

High-voltage cable harness

State, installation position, connections, shielding, equipotential bonding, ...

Traction battery, (BMS), housing for HV components

• State, attachment, design, ventilation, cooling, ...

5. Scope of Additional Testing

Additionally to Appendix VIIIa we see further potential in the following points:

e.g. visual/effect/function testing of components

Special Heater Systems, air-conditioning

 Function, effect, state, attachment, design, sealing, ...

Warning/safety notices

Presence, design, ...

Charging connections/Charging cables

Function, state, (immobiliser), …

6. Future topics

- Electric mobility includes more than just electric vehicles.
- Electric mobility is an indispensable component of economical and ecological individual mobility, now and in the future.
- Sustainable mobility is more than just a task for the automobile manufacturers: it is a task for all of society and all of the economy.
- Road Safety is manly driven by an optimized PTI system to ensure a very high technological level in operation.

Our claim: At the very least, electric mobility must match the safety and attractiveness of conventional mobility.

Thank you very much for your attention!

Dipl.-Ing. Frank Ramowsky Global Head of E-Mobility

Tel. +49 221 806 2306 Frank.Ramowsky@de.tuv.com

