

Procedure to verify the dynamic behaviour of the Suspension System on vehicle inspection

Jordi Brunet

Technical Manager, VTEQ, Spain

Procedure to verify the dynamic behaviour of the suspension system on vehicle inspection

CITA Regional Conference for Africa 4-5 March 2014

Current situation

- The suspension system plays an important role in the safety drivability of a vehicle
- To maintain the system in correct safety conditions it is necessary to know its performance during the life of the vehicle
- The brake system has an objective check method and validation criteria, regulated by a CE directive that must be met for approval of the vehicle in order to determine the system effectiveness

Current situation

- To test the suspension, a vibrating platform test bench is currently being used, but the test method and validation criteria are not reliable at the present
- Two main systems coexisting in PTIs
 - Force measuring based systems
 - Displacement measure based systems
- In both cases the result of the test is based in a criteria in function of the maximum amplitude (resonance) in relation with the static value, expressed in percentage
- Both the test method and validation criteria are inadequate and can lead to results that may be false

- The procedure is to determine the damping coefficient of the suspension system.
- The damping coefficient, defined as the quotient of system damping and critical damping (damping with no oscillating movement)

- To get the correct measurement is needed to excite the system with enough frequency broadband and energy
- Based on current Eusama bench. Following modifications have been made:
 - Excitation starting frequency has been decreased from 25Hz to 4 Hz
 - Excitation run has been increased from 6 to 25mm
 - Flywheel has been substituted by inverters to command the frequency slope down ramp (0.1Hz/s)
 - The platform-tire force has been measured
 - A new signal processing has been designed

7

New suspension measuring system (Damping coefficient)

 The measured tire-platform force signal has been transformed to frequency domain through Fourier Transformer in order to obtain the Frequency Response Function (FRF)

- When Damping Coefficient changes the sprung resonance peak shape varies significantly
- It allows to determining shock absorber damping coefficient

FREQUENCY RESPONSE FUNCTION

- This value could be estimated from the shape of the Resonance Peak on FRF.
- The Frequency (FR) and Amplitude (XR) value on the resonance peak is obtained.
- After the frequencies F1 & F2 have been determined by measuring the amplitude values that reduce half power from resonance peak.

$$\xi = \frac{(2*\pi * F_2)^2 - (2*\pi * F_1)^2}{4*(2*\pi * F_R)^2} \quad \xi = \frac{C}{C_{critical}}$$

- Using as analysis parameters:
 - Minimum adherent force measured between tire and platform (time domain) called "Fad"
 - Damping coefficient measured by the method above indicated called "ξ"

ADHERENT FORCE VARIATION vs DAMPING COEFFICIENT

- Observing the behaviour of these parameters three different areas have been found:
 - Area #3. Corresponding with values of ξ >0.3. In this area variation of ξ do not modify significantly the value of Fad.
 - Area # 2. Corresponding to values between 0.2 < ξ < 0.3. In this area Fad varies significantly when ξ is modified.
 - Area # 1. Corresponding to values 0.15 < ξ. In this area loss of Fad when ξ changes is very significant. Little variation of ξ involves an important reduction of Force transmission capacity from tire to road.

- Using a different vehicle configuration, the inflection point between "Area #1" to "Area #2" maintains very similar values.
- This fact allows us to establish a minimum damping factor below which, suspension system performance decreases significantly and driving safety could be seriously affected.

It will be called: "Limit Damping Coefficient" (ξ lim)

It is the damping coefficient value that produces the change from Area #1 to Area #2.

• Through a Taguichi experiment design, we can study the influence of different design parameters

Ms \rightarrow Sprung Mass(kg) Ks \rightarrow Suspension stiffness(N/m) Kn \rightarrow Tyre stiffness (N/m) Msn \rightarrow Unsprung mass (kg)

Experimental tests

- Model based results have been verified by experimental tests.
- Using:
 - A prototype of vibrating platform test bench
 - A vehicle equipped with variable shock absorbers

VARIABLE SHOCK ABSORBER PERFORMANCE

MINIMUM ADHERENT FORCE vs DAMPING COEFFCIENT VARIATION VEHICLE # 1 1600 Experimental Test Soft Shock Absrober Experimental Test Damping Coef. = 0.12 1400 Soft Shock Absrober Fad= 1000 N Damping Coef. = 0.23 L000 1200 (N) 1200 1000 1000 Fad= 1420 N Mathematical Model Soft Shock Absorber Damping Coef. = 0.25 MINIMUM ADHERENT Fad = 1390 N 800 Mathematical Model ٠ 600 Soft Shock Absorber 1 Damping Coef. = 0.12 Fad = 990 N 400 1 200 ٠ 0 0.1 0.2 0.4 0.5 0.6 0

16

Experimental tests

 Lost of vehicle performance under "Limit damping Coefficient" has been confirmed by model based simulation (CarSim)

Experimental tests

- Vehicle lateral stability
 - Through an ISO double line change test
 - Reduce the overturn speed from 110 km/h (shock absorber in good condition) to 100 km/h (shock absorber under "Limit Damping Coefficient")
- Vehicle longitudinal performance
 - Through a Directive 98/12 CEE brake test
 - Increase the brake distance from 77m (shock absorber in good condition) to 92m (shock absorber under "Limit Damping Coefficient")
 - Test performed at rough road

Conclusions

- Suspension system status can be achieved by vibrating platform test bench
- Characterizing dynamic behaviour of suspension system in vibrating test bench is sufficient to excite sprung mass resonance
- Through FRF it is possible to determine the damping coefficient of the shock absorber
- A "Limit Damping Coefficient" as a validation criteria has been established, below which dynamic behaviour of vehicle demonstrates outstanding loss of performance.
- Computer model results have been confirmed by experimental test with enough accuracy

Thank you!